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Abstract. Using a variational method with introduction of effective electron potentials, binding
energies and overlap functions of exciton ground states in ZnSe/ZnS quantum dots (QDs) with
small conduction-band offset are calculated. It is found that excitons in ZnSe/ZnS QDs are
incompletely confined due to the extension of electrons in the weak confinement condition. The
binding energies of such excitons are almost independent of potential shapes and quantum sizes
while the overlap functions are dependent on the shapes and sizes of QDs. It is quite different
between ZnSe/ZnS and conventional QDs and this will be subjected to experimental verification
in the future.

Recently, advances in fabrication technology have made it possible to manufacture
semiconductor quantum dots (QDs) in which the motion of electron and hole carriers
or that of one kind of carrier is strongly confined in all three spatial dimensions. This
can be achieved using a variety of techniques. For example, extensive efforts on III–
V materials such as InAs/GaAs [1–2] have demonstrated that self-organized QDs can be
directly fabricated by molecular beam epitaxy utilizing the Stranski–Krastnow mechanism.
The self-organization process can also be realized in the case of II–VI materials such as
CdSe/ZnSe [3–5].

The quantum confinement, under which the motion of electrons and holes is mainly in
the regions of the deep confining potentials induced by band offsets, has been observed in
both III–V [6–8] and II–VI [4, 5, 9] quantum dots even though the structures characterized
by length scales for exciton localization are quite different from each other. In some QDs
such as ZnSe/ZnS QDs, however, the motion of only one kind of carrier is strongly confined
in all three spatial dimensions so that the excitons are not strongly confined as conventional
ones are. What about the quantum confinement effect and character of exciton states in such
QDs? To our knowledge, there have been no reports on the problem in either experimental
observations or theoretical investigations. In order to show the character of incompletely
confined excitons in QDs, we have for the first time studied the binding energies and overlap
functions of exciton states in ZnSe/ZnS quantum dots with small conduction-band offset
[10, 11] i.e. with only holes confined strongly, in this letter.

Within the framework of an effective-mass approximation, the Hamiltonian of an
electron (a hole) of a spherical quantum dot can be written as

Hi = −h̄
2∇2

i

2mi
+ Vi(ri) (1)
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where mi is effective mass, andi = e and i = h correspond to electron and hole,
respectively. The potentialVi(r) is taken to be spherically symmetric in the present work
and has the form

Vi(r) =
{
Vi0 if r > R0

αrk if r < R0
(2)

whereVi0 is the barrier height and can be obtained from a fixed ratioQi of the band-gap
discontinuity1Eg between ZnSe and ZnS i.e.Vi0 = Qi1Eg. α is equal toVi0/Rk0. R0 is
the radius of the quantum dot. The shape ofVi(r) is determined byk.

The Hamiltonian of an exciton in the dot is as follows:

H = He +Hh − e2

εreh
(3)

where the last term is the Coulomb interaction between the electron and the hole. We
have neglected the effect of heavy-hole–light-hole mixing here. It is interesting to point
out that the quantum confinement of electrons and holes in conventional QDs is much
stronger than that induced by the Coulomb interaction. In ZnSe/ZnS QDs formed by self-
organized growth, however, electrons are weakly confined by theVe(re) becauseQe is very
small. In fact, there is no electron bound state inVe(re) asR0 is less than the electron
confinment radiusRec, which is related toVe0 and k of equation (2). Fork = ∞, for
example,Rec = 1.11h̄/(Ve0me)1/2. For a fixedVe0, theRec decreases with increasingk. In
the present study, theR0 of ZnSe/ZnS QDs is less than or close toRec. Hence the coupling
betweenVe(re) and electron–hole interaction plays an important role in bounding electrons
and forming excitons and has a strong influence on the binding energies in ZnSe/ZnS QDs.

A suitable approximation method should be established to treat the electron-hole
interaction for obtaining the electron and then exciton wavefunctions and binding energies
correctly. To solve the problem, we start with equation (3), which can be rewritten as

H = Heff,e(A,B)+Hh +H ′(A,B) (4)

with

Heff,e(A,B) = He +W(re, A,B) (5)

and

H ′(A,B) = − e2

εreh
−W(re, A,B) (6)

whereW(re, A,B) represents an effective electron potential introduced by a confined hole
in the dot. It is interesting to note that the hole is mainly confined by the dot in the regime
of R0. Therefore the form of the effective potentialW can be quite different in different
regimes ofre. According to the difference, it is reasonable to takeW as the following:

W(re, A,B) =


Ar2

e − B if re 6 Rα
Amr

2
e − Bm − e2

εre
if Rα < re 6 Rβ

− e2

εre
if Rβ < re <∞.

(7)

Here we have introduced two parametersA andB to be determined by a variational principle.
Am andBm can be deduced fromA andB by using the continuity ofW at the interface
re = Rα andre = Rβ where the ratios ofRα andRβ to R0 are chosen and then fixed. The
total process can make the variational calculation more effective. At the same time, a quite
reasonable potentialW is obtained.
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Now, we can exactly solve the Schrödinger-like equations with spherically symmetric
potentials

Heff,e(A,B)[Rnl(re, A, B)Ylm(θe, ϕe)] = Ee,nl(A, B)[Rnl(re, A, B)Ylm(θe, ϕe)] (8)

and

Hh[Rkl(rh)Ylm(θh, ϕh)] = Eh,kl [Rkl(rh)Ylm(θh, ϕh)] (9)

wheren(k), l andm are the principal, orbital and magnetic quantum numbers, respectively.
Then all of the exact eigenenergies and the corresponding eigenfunctions, which are in
different forms of series expansion in different regions of the radial equations, are obtained
[12]. Using the exact eigenfunctions given above, we can easily construct the trial functions
of the exciton ground state

90(re, rh, A,B) = R10(re, A, B)R10(rh) (10)

which is normalized. Thus the ground-state energyEG is given by the variational calculation

EG = min
A,B
〈R10(re, A, B)R10(rh)|H |R10(re, A, B)R10(rh)〉. (11)

Assuming thatEG approaches the minimum atA = Af andB = Bf , we can obtain

EG = Eh,10+ Ee,10(Af , Bf )+ E′(Af , Bf ) (12)

with

E′(Af , Bf ) = 〈R10(re, Af , Bf )R10(rh)|H ′(Af , Bf )|R10(re, Af , Bf )R10(rh)〉. (13)

Substituting equations (6) and (10) into equation (13), we can findE′(Af , Bf ) in the form

E′(Af , Bf ) = −
∫ ∞

0
R10(re, Af , Bf )W(re, Af , Bf )R10(re, Af , Bf )r

2
e dre

−
[ ∫ ∞

0
R10(rh)R10(rh)r

2
hdrh

[ ∫ rh

0
R10(re, Af , Bf )R10(re, Af , Bf )

r2
e

rh
dre

+
∫ ∞
rh

R10(re, Af , Bf )R10(re, Af , Bf )redre
]]
. (14)

Compared with the cases in one, two, and three dimensions, the binding energy is
defined by

EB = E0− EG = Ee,0− Ee,10(Af , Bf )− E′(Af , Bf ) (15)

where E0 and Ee,0 are respectively the exciton and electron ground-state energies in
the absence of the hole–electron interaction.Ee,10(Af , Bf ) is the lowest eigenenergy of
Heff,e(Af , Bf ). Further, according to the absolute values ofE′(Af , Bf ), we can gauge
whether theW(re, Af , Bf ) is suitable for describing the coupling betweenVe(re) and the
electron–hole interaction mentioned above. Compared withEB , the less|E′(Af , Bf )| is,
the betterW(re, Af , Bf ) is. Once theEG is known, the overlap function

IG =
∣∣∣ ∫ R10(r, Af , Bf )R10(r)r

2dr
∣∣∣2 (16)

related to the oscillation strength, can be easily obtained.
For the self-organized QDs, both ofR0 and Ve0 depend on the growth conditions.

We assume that for ZnSe/ZnS QDs, theR0 is between 22 and 34̊A and Ve0 is about
32 meV and that the potential is usually deviated from the square (k = ∞) one. For a
better understanding, we have calculated ground states of excitons in ZnSe/ZnS QDs of
Vh0 = 860 meV as a function ofk, R0 and Ve0, respectively. In calculations, we take
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me = 0.16m0 (m0 is the free electron mass),mh = 0.61m0 and ε = 8.7 for ZnSe and
me = 0.27m0, mh = 0.96m0 andε = 8.1 for ZnS, respectively.

In table 1,EG, EB and IG have been shown for excitons in QDs ofk = ∞ with
Ve0 = 3279 (Vh0mh/me), 88 and 32 meV andR0 = 22, 25, 34, 42 and 56Å, respectively.
We should note that the variation ofEB andIG with R0 is quite different between the two
cases ofVe0 = Vh0mh/me and 32 meV. As shown in the table, theEB of Ve0 = Vh0mh/me
strongly increases with decreasingR0 while that ofVe0 = 32 meV is found to be almost
constant around 45 meV in the region ofR0 between 22 and 42̊A. IG of Ve0 = Vh0mh/me
is equal to 1 while that ofVe0 = 32 meV is less than 1 and increases withR0. These results
mean that with increasingR0, the oscillator strength of a completely confined exciton
decreases while that of an incompletely exciton can increases. The values ofEB and IG
are larger forVe0 = Vh0mh/me than forVe0 = 32 meV and bothEB values are much larger
than the bulk value. It is clearly seen thatEB and IG are sensitive toVe0; compare those
of Ve0 = 32 meV with those ofVe0 = 88 meV.

Table 1. EG, EB and IG of excitons in QDs withk = ∞ as a function ofVe0 andR0. The
energy unit is meV. Takingme = 0.16m0 andmh = 0.61m0, Vhmh/me = 3279 meV.

Ve0 = 32 meV Ve0 = 88 meV Ve0 = 3279 meV

EG EB IG EG EB IG EG EB IG

R0 = 22 Å 74.22 44.57 0.361 105.2 68.04 0.536 242.7 114.7 1.00
R0 = 25 Å 57.85 44.80 0.410 84.89 67.59 0.596 194.3 103.9 1.00
R0 = 34 Å 28.67 45.44 0.535 46.58 60.64 0.721 100.1 81.21 1.00
R0 = 42 Å 13.82 45.52 0.630 25.78 53.19 0.800 55.33 66.89 1.00
R0 = 56 Å 1.524 38.29 0.742 8.217 43.76 0.880 9.523 51.99 1.00

The realmh is anisotropic for both ZnSe and ZnS materials so we takemh of ZnSe
(ZnS) to bemh = mhxy = 0.17 (0.31)m0 instead ofmh = mhz = 0.61 (0.96)m0 to see
the anisotropic effect onEB and IG of Ve0 = 32 meV. It is found that the effect can be
neglected in the incompletely confined excitons because the holes are confined strongly in
a small region. Also it is easy to understand that the binding energy of an incompletely
confined exciton approaches that (28.8 meV) of a shallow donor in the bulk materials as
Vh0→∞, Ve0→ 0 andR0→ 0.

In table 2,EB have been shown for excitons in QDs ofVe0 = 32 meV withk = 2, 4, 8
and∞ andR0 = 22, 25, 34, 42 and 56Å, respectively. TheEB is also found to be almost
constant in the regions ofR0 between 22 and 42̊A with k = 4, 8 and∞ even thoughEG
values are quite different from each other. This means that theEB of incompletely confined
excitons are almost independent ofR0, andk in the region ofR0.

Table 2. EB of excitons in QDs withVe0 = 32 meV as a function ofR0 and k. The energy
unit is meV.

R0 = 22 Å R0 = 25 Å R0 = 34 Å R0 = 42 Å R0 = 56 Å

k = 2 41.92 41.76 41.43 41.52 41.99
k = 4 43.08 43.15 43.37 43.89 42.61
k = 8 43.80 43.91 44.37 44.61 41.87
k = ∞ 44.57 44.80 45.44 45.52 38.29



Letter to the Editor L587

The different characteristics ofEB and IG between incompletely and completely
confined excitons can be explained by noting the difference of the wave functions. For
Ve0 = 32 meV, theR10(re, Af , Bf ) is much more extended thanR10(rh), which is changed
with R0 and confined mainly within the region ofR0. The binding energies can be almost
constant because the extension of electrons and the strong confinement of holes make the
hole–electron interaction slightly changed withR0, mh andk in the incompletely confined
region. IG is less unity because of the difference between electron and hole wavefunctions.
For Ve0 = Vh0mh/me, both electron and hole wavefunctions change withR0 in the same
ratio and the interaction increases with decreasingR0. In fact, the interaction is almost
in proportion to 1/R0 in conventional QDs both electrons and holes confined strongly.
Mentioned above is the reason why there is a such difference.

It is interesting to point out that the ratio of|E′(Af , Bf )| to EB is between 0.05 and
0.1. This means that the effective potentialW(re, Af , Bf ) is suitable for describing the
coupling betweenVe(re) and the electron–hole interaction in the incompletely confined
exciton system.

In summary, using the variational method with introduction of effective electron
potentials, we have calculated the binding energies and overlap functions of excitons in
ZnSe/ZnS quantum dots with small conduction-band offset. The character of completely
confined excitons in QDs has been also studied by usingVe0 = Vh0mh/me instead of
Ve0 = 32 meV. The two cases are quite different. It has been found that the coupling
between the Coulomb and confinement interactions is very important and the binding
energies are almost independent of the sizes and shape of QDs for the incompletely confined
excitons. However the values are still much larger than those of the bulk materials. Finally,
it is interesting to point out that the incompletely confined excitons can exist not only in QDs
but also in quantum wells and wires. This will be subjected to experimental verification in
the future. Furthermore, we should point out that our method shown here is also suitable
for studying the system mentioned above and others, for example, spectra of incompletely
confined excitons in different quantum-well structures.

One of the authors, J-L Zhu, is supported by the ‘863’ High Technology Research and
Development Programme of China. He is grateful to IMR and CIR, Tohoku University,
Japan for the kind hospitality during his visit to the Institute.
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